Executive Summary

Table below provides a summary of the key events and a pipeline assessment of the biomarkers in the Alzheimer’s disease (AD) market.

Biomarkers in the AD Market: Key Events and Pipeline Assessment

<table>
<thead>
<tr>
<th>Key Events</th>
<th>Level of Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012: Amyvid (Eli Lilly) approval – first US Food and Drug Administration (FDA) approval of diagnostic assay for AD</td>
<td>↑↑</td>
</tr>
<tr>
<td>2013: US FDA draft guidance issued for industry development of treatments for early-stage AD; final guidance anticipated in Q4 2013</td>
<td>↑↑</td>
</tr>
<tr>
<td>2013: Centers for Medicare & Medicaid Services (CMS) to issue ruling on Amyvid reimbursement in July</td>
<td>↑↑</td>
</tr>
<tr>
<td>2013: [18F] Flutemetamol (GE Healthcare) submitted for FDA and European Medicines Agency (EMA) review</td>
<td>↑</td>
</tr>
<tr>
<td>2013: [18F] Florbetaben (Piramal) submitted for FDA and EMA review</td>
<td>↑</td>
</tr>
</tbody>
</table>

Pipeline Assessment – Total Products Profiled

<table>
<thead>
<tr>
<th>Profiled Products</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloid Biomarkers</td>
<td>8</td>
</tr>
<tr>
<td>Amyloid positron emission tomography (PET) imaging</td>
<td>3</td>
</tr>
<tr>
<td>Cerebrospinal fluid (CSF) amyloid assays</td>
<td>3</td>
</tr>
<tr>
<td>Other amyloid assays</td>
<td>2</td>
</tr>
<tr>
<td>Tau Biomarkers</td>
<td>3</td>
</tr>
<tr>
<td>CSF tau assays</td>
<td>2</td>
</tr>
<tr>
<td>Other tau assays</td>
<td>1</td>
</tr>
<tr>
<td>Other Molecular AD Biomarkers</td>
<td>7</td>
</tr>
<tr>
<td>CSF assays</td>
<td>1</td>
</tr>
<tr>
<td>Blood-based assays</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: GlobalData

Nascent AD Biomarker Market Provides Opportunities for Companies with Innovative Products to Establish their Presence

From a commercial standpoint, the AD biomarkers market is still relatively young. Biomarkers for AD can be classified in terms of pathological mechanism and also in terms of the assay technology used to detect and assess the biomarker. Magnetic resonance imaging (MRI) and fluorodeoxyglucose-positron emission tomography (FDG-PET) are valuable biomarker tools for assessing brain structure and function. However, these imaging tests can be administered in AD patients, at least at the basic level, without the need for AD-specific products or modifications. These tools don’t provide as many opportunities for further development in AD compared with other biomarkers and thus there aren’t many companies that have been involved in the development and commercialization of structural and functional imaging biomarker products for AD.

Molecular biomarkers of AD, on the other hand, present more viable opportunities for the development of novel assays with commercial potential. At the time of this writing, Amyvid ([18F] Florbetapir), an amyloid positron emission tomography (PET) imaging ligand marketed by Eli Lilly, is the only diagnostic assay approved by the Food and Drug Administration (FDA) for AD.
Executive Summary

Despite Lilly’s market monopoly at present, there are several similar amyloid PET imaging ligands in the pipeline, with GE Healthcare’s [18F] Flutemetamol and Piramal’s [18F] Florbetaben currently undergoing regulatory review in the US and the European Union (EU), and these are likely to provide active competition.

There are also several companies actively developing fluid-based biomarker panel assays for AD, including Innogenetics, which has produced assay kits for amyloid and tau proteins that are widely used in academic research and in clinical drug development. Some of these Innogenetics AD biomarker kits have received CE (Conformité Européenne) marking in the EU, but to date, none are FDA approved for clinical diagnostic use in the US.

Blood-based assays for AD biomarkers hold great promise as screening tests that can be widely applied in a cost-effective manner and are a major unmet need for AD. Several companies, such as Exonhit, Ctyox, Proteome Biosciences, DiaGenic, and Amarantus, have products in development that, if validated, may satisfy this need.

Novel Biomarker Products would be Welcomed to Meet the Numerous Unmet Needs in the AD Biomarker Market

The AD biomarker field is rife with unmet needs, both environmental and clinical. Environmental unmet needs include limited physician knowledge of the appropriate application of existing biomarker tools, as well as limited public awareness of the disease, which prevents people from seeking a clinical diagnosis. Often, Alzheimer’s symptoms are ascribed to normal aging. Cost and accessibility are currently limiting the widespread use of the available biomarker tools, since most of these are imaging-based technologies (MRI, PET) that can be quite expensive and require access to specialized imaging facilities.

There are also several unmet needs intrinsic to the biomarkers themselves. There is a lack of biomarkers that adequately assess the multiple pathological processes that are thought to contribute to AD; although tools to assess amyloid as a biomarker for AD have been actively developed, molecular measures of neurodegeneration, inflammation, and oxidative stress remain limited. Consequently, there remains plenty of room in the market for products that can satisfy these needs, provided that their accuracy and validity can be demonstrated. However, there have been challenges in producing widely reproducible assays, as described below.
Executive Summary

Existing AD Biomarker Assays Face Challenges in Validation and Standardization that may be Addressed through Public-Private Collaborations

The biomarker assays that have been developed suffer from a lack of standardization and validation, which has limited their clinical utility. However, the challenge of financing the large studies needed for assay validation has limited smaller companies from advancing their products to the clinical stage, and although several assays and kits are now commercially available, many are restricted to research or investigational use only.

The great public need for improved AD detection and diagnosis, which is necessary to facilitate effective intervention, has led to the development of several public-private collaborations geared towards the large-scale validation of AD biomarkers. The largest of these efforts is the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which represents a collaboration of researchers across multiple study centers who are participating in open-access and pre-competitive information sharing through the ADNI database. These efforts are sponsored though government or public funding sources, with contributions from private industry participants that have a vested interest in developing biomarker products or AD therapies.

Collaborative efforts such as ADNI have enabled faster and more efficient advancement of AD research, and are anticipated to resolve some of the validation barriers that have limited the widespread use of biomarkers in AD.

Regulatory Barriers and Reimbursement Hurdles Impede Growth of AD Biomarker Market

Once these biomarker assays have been developed and have gone through the clinical trial processes required for validation, they may be ready for clinical use, but still face regulatory barriers to market entry and market adoption. Most countries have rigorous regulatory standards for diagnostics, particularly the US, where the FDA requirements for the approval of diagnostic products are very stringent, and the process implicit in satisfying these requirements is a costly one. As such, only products with powerful stakeholders or financial backing may be able to successfully navigate this regulatory process. Once the products are approved for clinical marketing, they then face the ensuing challenge of obtaining health insurance coverage. Amyvid is a clear example of this challenge because although it has been FDA approved since April 2012, it is yet to be reimbursed by government or private payers, which has greatly limited its market penetration.
Physicians and Researchers Express Measured Optimism About the Future of the AD Biomarker Landscape

The key opinion leaders (KOLs) interviewed for this report shared their insights into the current state of the AD biomarker field: they shared the challenges impacting biomarkers development, the unmet needs, as well the opportunities and directions that are particularly promising for the future of this market. The KOLs were in agreement that concerns over the reproducibility, standardization, and ultimately the large-scale validation of biomarkers, were key challenges in advancing biomarkers into the clinical arena for AD. They also expressed a need for varied biomarkers to serve needs both in AD clinical diagnosis and prognosis, as well as to guide therapy development for AD.

“What is needed is] some kind of cholesterol [test] for Alzheimer’s disease, and that if we consistently reduce cholesterol levels, we know that we are going to consistently reduce morbidity and mortality from heart attacks. That’s what ADNI and all these related long-term biomarker studies are really going to enable us to do in the long run, and I think that is why they are worth the investment — that we are going to be able to link these biomarkers in the pre-symptomatic or mildly symptomatic stage to longer-term outcomes, and we are going to be able to say, let’s say that at least 90% of people who had this biomarker when they were asymptomatic were going on to get Alzheimer’s disease within 10 years.”

[US] KOL, March 2013

“None of the biomarkers has so far been validated as a surrogate outcome. This is what drug companies in all likelihood would like to have because that would allow them to save a lot of time and resources because they could do Phase II and Phase III trials of smaller size, of let’s say 30 to 40 patients instead of 250, as you must have now, or more, actually. So this is a big, big unmet need.”

[EU] KOL, May 2013
Executive Summary

The KOLs also reiterated that the market potential of these biomarker-based tools was largely tied to the successful development and approval of disease-modifying therapies for AD. However, they cautioned that the absence of such treatments should not be a deterrent for companies developing these biomarker assays because it will be important for these companies to establish themselves and their products in the market to ensure that they are strategically poised prior to these drug approvals.

“If somebody is a major player, has an interest in there, the market is still young, the opportunity and the potential is still there, the commercial value is there and the medical ethical value is there. You have to organize and coordinate that process with your product — I think that’s successful if sustained — and then not wait until a disease modifier becomes available because others will penetrate the market before you, and that will be a big disadvantage.”

[EU] KOL, April 2013

“These [biomarkers] will all penetrate the market within the next one to five years, and obviously, it would be a major boost in motivation as well as application, if there would be an approved disease modifier.”

[EU] KOL, April 2013
Table of Contents

1 Table of Contents

1.1 List of Tables

1.2 List of Figures

2 Introduction

2.1 Catalyst

2.2 Related Reports

2.3 Upcoming Related Reports

3 Alzheimer's Disease Overview

3.1 Continuum of AD – Preclinical, MCI and AD Dementia

3.1.1 Preclinical AD

3.1.2 MCI

3.1.3 AD Dementia

3.2 Etiology and Pathophysiology

3.2.1 Etiology

3.2.2 Pathophysiology

4 AD Biomarkers – Overview

4.1 What are Biomarkers?

4.2 Criteria for Good Biomarkers

4.2.1 Sensitivity and Specificity of Biomarkers

4.3 Role of Biomarkers in AD Diagnosis

4.3.1 Challenges in Establishing AD Biomarkers as Diagnostic Tools
Table of Contents

4.4 Role of Biomarkers in Drug Development ... 40
4.5 Biomarker Development and Validation .. 43
4.6 Classes of AD Biomarkers by Pathophysiological Mechanism 44
4.6.1 Temporal Evolution of Biomarkers .. 46
5 Unmet Needs Assessment ... 49
5.1 Overview .. 49
5.2 Unmet Needs Analysis ... 50
5.2.1 Patient and Physician Knowledge/Awareness of AD Diagnosis 50
5.2.2 Generalized Biomarker Unmet Needs ... 53
5.2.3 Unmet Need for Diverse Types of Biomarkers ... 56
6 AD Biomarkers Market Drivers and Barriers ... 61
6.1 Driver: Increasing prevalence of AD corresponding to a growth in the aging population will rapidly expand the biomarker market size ... 61
6.2 Driver: Anticipated future cost of biologic AD treatments will drive the use of biomarker diagnostics .. 62
6.3 Driver: Favorable regulatory standards for the application of biomarkers in drug discovery ... 63
6.4 Barrier: Present lack of disease-modifying treatments hinders the use of diagnostic tests.... 63
6.5 Barrier: Rigorous, expensive, and time-consuming nature of biomarker development and validation .. 64
6.6 Barrier: Reimbursement restrictions for diagnostic testing ... 65
6.7 Barrier: Healthcare system and physician practice barriers limit patient referral to specialists and the use of biomarker tests ... 65
7 Amyloid Beta Biomarkers ... 68
7.1 Overview of Biomarker Class .. 68
BIOMARKERS IN ALZHEIMER’S DISEASE

Table of Contents

- **7.2** Drug Therapies Targeting Amyloid Beta ..69
 - **7.2.1** Overview ..69
 - **7.2.2** Representative Pipeline Drugs ...69
- **7.3** Amyloid Biomarker Assays ..70
 - **7.3.1** Amyloid PET-Imaging ...71
 - **7.3.2** CSF-Based Amyloid Assays ..82
 - **7.3.3** Other Amyloid Assays in Development ..89
- **8** Tau-Related Biomarkers ...92
 - **8.1** Overview of Biomarker Class ..92
 - **8.2** Drug Therapies Targeting Tau ..92
 - **8.2.1** Overview ..92
 - **8.2.2** Representative Products ..92
 - **8.3** Tau Biomarker Assays ..94
 - **8.3.1** CSF-Based Tau Assays ..95
 - **8.3.2** Promising Pipeline Products - Tau PET Imaging Ligands100
- **9** Beyond Amyloid and Tau: Other Molecular AD Biomarkers in Development102
 - **9.1** Overview ...102
 - **9.1.1** Neuronal and Synaptic Degeneration ...102
 - **9.1.2** Inflammation and Oxidative Stress ...103
 - **9.2** Promising Pipeline Products ..106
 - **9.2.1** Alzheimer’s CSF 16-Plex Assay (Proteome Sciences)106
 - **9.3** Blood-Based Biomarkers ..107
 - **9.3.1** Overview ...107
Table of Contents

9.3.2 Promising Pipeline Products

10 Functional Brain Imaging Biomarkers

10.1 Overview of Biomarker Class

10.2 Functional Brain Imaging Assays

10.2.1 FDG-PET

10.2.2 FMRI Biomarkers of AD

11 Structural Brain Imaging Biomarkers

11.1 Overview of Biomarker Class

11.2 Structural Brain Imaging Assays

11.2.1 MRI Hippocampal Volumetry

11.2.2 Other Structural Imaging Biomarkers in Pipeline Development

12 Regulatory Considerations Impacting AD Biomarkers

12.1 Clinical Trial Design in AD Drug Development

12.1.1 Regulatory Agency Recommendations

12.1.2 Key Opinion Leaders on the Use of Biomarkers in Drug Clinical Trials

12.1.3 Mapping the Use of Biomarkers in Key AD Drug Clinical Trials

12.1.4 AD Drug Approval, Population or Stage-Specific Indications, and Off-Label Use

12.2 Reimbursement of Biomarker-Based Testing

12.2.1 Concerns Limiting Reimbursement of Biomarker Testing for AD

12.2.2 Region-Specific Differences in Biomarker Test Reimbursement Policies and Pathways in the US and EU

13 Outlook and Opportunities for AD Biomarkers

13.1 Overview
Table of Contents

13.2 Key Players, Partnerships, and Associations ... 152
13.2.1 National and International AD Biomarkers Consortia ... 152
13.2.2 Private Industry Biomarker Partnerships ... 154
13.3 Opportunity Analysis .. 155
13.3.1 Opportunity: Biomarkers to Determine Appropriate Use of Treatment 156
13.3.2 Opportunity: Biomarkers as Populations Screens for Alzheimer’s Disease 157
13.3.3 Opportunity: Continued Development of Varied Biomarkers of Pathophysiology 157

14 Appendix .. 158
14.1 Bibliography .. 158
14.2 Abbreviations ... 173
14.3 Research Methodology ... 177
14.4 Physicians and Specialists Included in this Study ... 178
14.5 About the Authors ... 180
14.5.1 Authors .. 180
14.5.2 Global Head of Healthcare ... 181
14.6 About GlobalData .. 182
14.7 Disclaimer ... 182
1.1 List of Tables

Table 1: Biomarker Unmet Needs – Current Level of Attainment.. 50
Table 2: AD Biomarkers – Market Drivers and Barriers, 2013 ... 61
Table 3: AD – Amyloid-Targeting Phase III Pipeline, 2013 ... 69
Table 4: AD – Amyloid-Targeting Phase II Pipeline, 2013 ... 70
Table 5: Aβ Biomarkers by Stage of Development, 2013 ... 71
Table 6: SWOT Analysis of Amyloid PET Imaging in AD, 2013 .. 77
Table 7: Product Profile of Amyvid, 2013 .. 78
Table 8: SWOT Analysis of Amyvid, 2013 .. 78
Table 9: Product Profile of [18F] Flutemetamol, 2013 .. 79
Table 10: SWOT Analysis of [18F] Flutemetamol, 2013 ... 79
Table 11: Product Profile of [18F] Florbetaben, 2013 .. 80
Table 12: SWOT Analysis of [18F] Florbetaben, 2013 .. 80
Table 13: Product Profile of NAV4694, 2013 .. 81
Table 14: SWOT Analysis of NAV4694, 2013 ... 81
Table 15: Characteristics of ELISA and xMAP Immunoassay Platforms for the Measurement of CSF Biomarkers in AD ... 83
Table 16: SWOT Analysis of CSF-Based Amyloid Tests, 2013 ... 85
Table 17: Product Profile of INNOTEST β-Amyloid1-42, 2013 .. 86
Table 18: SWOT Analysis of INNOTEST β-Amyloid1-42, 2013 .. 86
Table 19: Product Profile of INNO-BIA AlzBio3, 2013 .. 87
Table 20: SWOT Analysis of INNO-BIA AlzBio3, 2013 ... 87
Table 21: Product Profile of EP-AD Diagnostic CSF Test, 2013 .. 88
Table 22: SWOT Analysis of EP-AD Diagnostic CSF Test, 2013 ... 89
Table 23: Product Profile of ABtest, 2013 ... 89
Table of Contents

Table 24: SWOT Analysis of ABtest, 2013 ... 90
Table 25: Product Profile of SAPPHIRE II Eye Test, 2013 ... 90
Table 26: SWOT Analysis of SAPPHIRE II Eye Test, 2013 .. 91
Table 27: AD, Tau-Targeting Therapies, Phase III Pipeline, 2013 93
Table 28: AD, Tau-Targeting Therapies, Phase II Pipeline, 2013 93
Table 29: AD, Tau-Targeting Therapies, Phase I Pipeline, 2013 93
Table 30: Tau Biomarkers by Stage of Development, 2013 94
Table 31: SWOT Analysis of CSF-based Tau Assays, 2013 97
Table 32: Product Profile of INNOTEST hTau Ag, 2013 ... 98
Table 33: SWOT Analysis of INNOTEST hTau Ag, 2013 .. 98
Table 34: Product Profile of INNOTEST PHOSPHO-TAU\(^{(181P)}\), 2013 99
Table 35: SWOT Analysis of INNOTEST PHOSPHO-TAU\(^{(181P)}\), 2013 99
Table 36: SWOT Analysis of Tau PET Imaging in AD, 2013 101
Table 37: Potential Biomarkers of AD, 2013 ... 105
Table 38: Product Profile of Alzheimer’s CSF 16-Plex Assay, 2013 106
Table 39: SWOT Analysis of Alzheimer’s CSF 16-Plex Assay, 2013 107
Table 40: Product Profile of AclarusDx, 2013 ... 109
Table 41: SWOT Analysis of AclarusDx, 2013 .. 110
Table 42: Product Profile of ADpredict Screening Test, 2013 110
Table 43: SWOT Analysis of ADpredict Screening Test, 2013 111
Table 44: Product Profile of Alzheimer’s Plasma 9-Plex Assay, 2013 112
Table 45: SWOT Analysis of Alzheimer’s Plasma 9-Plex Assay, 2013 112
Table 46: Product Profile of ADtect, 2013 ... 113
Table 47: SWOT Analysis of ADtect, 2013 ... 113
Table of Contents

Table 48: Product Profile of MCItect, 2013 .. 114
Table 49: SWOT Analysis of MCItect, 2013 .. 114
Table 50: Product Profile of LymPro Test, 2013 .. 115
Table 51: SWOT Analysis of LymPro Test, 2013 .. 115
Table 52: Functional Brain Imaging Biomarkers by Stage of Development, 2013 116
Table 53: SWOT Analysis of FDG- PET Imaging in AD, 2013 120
Table 54: SWOT Analysis of FMRI Biomarkers in AD, 2013 124
Table 55: Structural Brain Imaging Biomarkers by Stage of Development, 2013 126
Table 56: SWOT Analysis of MRI Hippocampal Volumetry, 2013 130
Table 57: Features of an Early-AD Therapy Clinical Trial, 2013 134
Table 58: Summary of the FDA Guidance for Drug Development in Early AD, 2013 135
Table 59: Biomarker Use in Ongoing AD Drug Clinical Trials, 2013 141
1.2 List of Figures

Figure 1:	The Continuum of Alzheimer’s Disease	19
Figure 2:	Atrophy of the Brain in Alzheimer’s Disease	26
Figure 3:	Key Pathological Features in Alzheimer’s Disease	28
Figure 4:	Non-Amyloidogenic Metabolism of APP	30
Figure 5:	Amyloidogenic Metabolism of APP	31
Figure 6:	Neurofibrillary Tangles	33
Figure 7:	Oxidative Damage due to Free Radicals	35
Figure 8:	Biomarkers in Drug Discovery	42
Figure 9:	AD Biomarker Tests by Pathophysiology	45
Figure 10:	Dynamic Changes in Alzheimer’s Disease Biomarkers	46
Introduction

2 Introduction

2.1 Catalyst

The growing prevalence, devastating health outcomes, and social and economic impact of Alzheimer’s disease (AD) make it a disease of epidemic proportion, with severe implications for societies at large if not adequately addressed. Inherent to the process of tackling the AD scourge is the need for tools that will allow for the early and accurate diagnosis of AD, as well as the identification of populations at risk. However, well-validated and established biomarkers are required to satisfy these needs. Several recent regulatory and industry events have brought the AD biomarker field to the forefront:

- The recent unsuccessful late-stage clinical trials for AD drugs such as bapineuzumab have emphasized the need for a paradigm shift geared towards early intervention in the treatment of AD. However, biomarkers are required in order to identify patients with early AD pathology prior to the onset of overt clinical symptoms, and to assess the efficacy and target engagement of putative therapies in clinical trials.

- In early 2013, the FDA issued a draft guidance for industry providing its current thinking on the process of drug development for the early treatment of AD. The document highlighted the possible roles that could be satisfied by AD biomarkers once there was widespread evidence-based agreement regarding the clinical utility of these biomarkers.

- The AD market also saw the entry in 2012 of the only FDA-approved diagnostic assay for AD, Amyvid (Eli Lilly), which also recently received marketing approval in the EU. Amyvid is in many ways a pioneering biomarker product within the AD market that has illustrated some of the challenges that ensuing biomarker assays will face navigating the regulatory and reimbursement landscape.
Appendix

14.6 About GlobalData

GlobalData is a leading global provider of business intelligence in the healthcare industry. GlobalData provides its clients with up-to-date information and analysis on the latest developments in drug research, disease analysis, and clinical research and development. Our integrated business intelligence solutions include a range of interactive online databases, analytical tools, reports and forecasts. Our analysis is supported by a 24/7 client support and analyst team.

GlobalData has offices in New York, Boston, London, India and Singapore.

14.7 Disclaimer

All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher, GlobalData.